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a b s t r a c t 

The coronavirus disease 2019 (COVID-19) has become a public health emergency of international concern 

affecting 201 countries and territories around the globe. As of April 4, 2020, it has caused a pandemic 

outbreak with more than 11,16,643 confirmed infections and more than 59,170 reported deaths world- 

wide. The main focus of this paper is two-fold: (a) generating short term (real-time) forecasts of the 

future COVID-19 cases for multiple countries; (b) risk assessment (in terms of case fatality rate) of the 

novel COVID-19 for some profoundly affected countries by finding various important demographic char- 

acteristics of the countries along with some disease characteristics. To solve the first problem, we pre- 

sented a hybrid approach based on autoregressive integrated moving average model and Wavelet-based 

forecasting model that can generate short-term (ten days ahead) forecasts of the number of daily con- 

firmed cases for Canada, France, India, South Korea, and the UK. The predictions of the future outbreak 

for different countries will be useful for the effective allocation of health care resources and will act as 

an early-warning system for government policymakers. In the second problem, we applied an optimal 

regression tree algorithm to find essential causal variables that significantly affect the case fatality rates 

for different countries. This data-driven analysis will necessarily provide deep insights into the study of 

early risk assessments for 50 immensely affected countries. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

In December 2019, Wuhan city of China became the centre of

n outbreak of pneumonia of unknown cause, latter named as

oronavirus disease 2019 (COVID-19), which raised intense atten-

ion not only within China but internationally [13,32] . The COVID-

9 pandemic is the most significant global crisis since the World

ar-II that affected almost all the Countries of our planet [4] . As

f April 4, 2020, an outbreak of COVID-19 has resulted in 11,16,643

onfirmed cases with reported deaths of 59,170 worldwide [22] . On

arch 11, WHO publicly characterized COVID-19 as a “global pan-

emic”, and shortly after that, the United States declared COVID-

9 outbreaks a national emergency. The COVID-19 has caused a

reat threat to the health and safety of people all over the world

ue to its widespread and potential harm. Thus, the studies of

he novel COVID-19 epidemics and its future development trend

as become a cutting-edge research topic at this moment. We are

herefore motivated to ask: (a) Can we generate real-time forecasts
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f daily new COVID-19 cases for countries like Canada, France, In-

ia, South Korea, and the UK? (b) What are the probable causal

ariables that have significant impacts on the case fatality rates for

he profoundly affected countries? 

To answer the first question, we study classical and modern

orecasting techniques for which the prediction accuracy largely

epend on the availability of data [28] . In outbreaks of COVID-

9 epidemics, there are limited data available, making predictions

idely uncertain. From previous studies, it was evident that the

iming and location of the outbreak facilitated the rapid trans-

ission of the virus within a highly mobile population [29] . In

ost of the affected countries, the governments implemented a

trict lockdown in subsequent days of initial transmission of the

irus and within hospitals, patients who fulfill clinical and epi-

emiological characteristics of COVID-19 are immediately isolated.

he constant increase in the global number of COVID-19 cases is

utting a substantial burden on the health care system for Canada,

rance, India, South Korea, and the UK. To anticipate additional re-

ources to combat the epidemic, various mathematical and statisti-

al forecasting tools [21,34] and outside China [10,20,36] were ap-

lied to generate short-term and long-term forecasts of reported

ases. These model predictions have shown a wide range of vari-

https://doi.org/10.1016/j.chaos.2020.109850
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2020.109850&domain=pdf
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ations. Since the time series datasets of COVID-19 contain both

nonlinear and nonstationary patterns, therefore, making decisions

based on an individual model would be critical. In this study, we

propose a hybrid modeling approach to generate short-term fore-

casts for multiple countries. In traditional time series forecasting,

the autoregressive integrated moving average (ARIMA) model is

used predominantly for forecasting linear time series [6] . But in re-

cent literature, the wavelet transformation based forecasting model

has shown excellent performance in nonstationary time series data

modeling [27] . Thus, combining both models may accurately model

such complex autocorrelation structures in the COVID-19 time-

series datasets and reduce the bias and variances of the predic-

tion error of the component models. In the absence of vaccines

or antiviral drugs for COVID-19, these estimates will provide an

insight into the resource allocations for the exceedingly affected

countries to keep this epidemic under control. Besides shedding

light on the dynamics of COVID-19 spreading, the practical in-

tent of this data-driven analysis is to provide government offi-

cials with realistic estimates for the magnitude of the epidemic for

policy-making. 

The second problem is connected with the global concern of

health and mortality due to the significant COVID-19 outbreaks.

Mortality is crudely estimated using a statistic, the case fatality

rate (CFR), which divides the number of known deaths by the to-

tal number of identified cases [5,18,30] . During the current phase

of this global pandemic, it is critically important to obtain reliable

estimates of the overall CFR. The estimates of CFR are highly de-

pendent on several country-specific demographic parameters and

various disease characteristics. A key differentiation among the CFR

of different countries can be found by determining an exhaustive

list of causal variables that significantly affect CFR. In this work, we

put an effort to identify critical parameters that may help to assess

the risk (in terms of CFR) using an optimal regression tree model

[7] . The regression tree has a built-in variable selection mecha-

nism from high dimensional variable space and can model arbi-

trary decision boundaries. The regression tree combines case es-

timates, epidemiological characteristics of the disease, and heath-

care facilities to assess the risks of major outbreaks for profoundly

affected countries. Such assessments will help to anticipate the ex-

pected morbidity and mortality due to COVID-19 and provide some

critical information for the planning of health care systems in var-

ious countries facing this epidemic. 

The rest of the paper is organized as follows. In Section 2 , we

discuss the data, development of the hybrid model, and experi-

mental results for short-term forecasts of COVID-19 for Canada,

France, India, South Korea, and the UK. In Section 3 , country-wise

CFR datasets, method, and results for finding critical parameters

are presented. We discuss the assumptions and limitations of our

findings in Section 4 . Finally, the discussions about the results and

policy recommendations are given in Section 5 . 

2. Real-time forecasting of COVID-19 cases 

We focus on the daily figures of confirmed cases for five differ-

ent countries, namely Canada, France, India, South Korea, and the

UK. The datasets are retrieved by the Global Change Data Lab 1 ).

All these datasets are collected from the starting date of the dis-

ease for the respective countries to April 4, 2020. In this section,

we first briefly discuss these datasets, followed by the develop-

ment of the proposed hybrid model, and finally, the application

of the proposed model to generate short-term forecasts of the fu-

ture COVID-19 cases for five different countries. All these datasets

and codes to be used in this section are made publicly available at
1 https://ourworldindata.org/coronavirus 

(  

t  

[

ttps://github.com/indrajitg-r/COVID for the reproducibility of this

ork. 

.1. Datasets 

Five univariate time-series datasets are collected for the real-

ime prediction purpose of COVID-19 cases for India, Canada,

rance, South Korea, and the UK. Several previous studies have

orecasted future COVID cases for China and a few other countries

sing mathematical and traditional time series forecasting mod-

ls, for details see [20,21,29,34,36] . We try to nowcast the COVID-

9 cases of five different countries based on their past cases. For

ndia and UK, we consider the daily laboratory-confirmed cases

rom January 30, 2020, through April 4, 2020 and from January 31,

020 through April 4, 2020, respectively, for model building. Daily

OVID-19 cases data for Canada, France, and South Korea are taken

or the time period January 20, 2020 through April 4, 2020, Jan-

ary 25, 2020 through April 4, 2020, and January 26, through April

, 2020, respectively. 

The dataset for India contains a total of 64 observations, 65

bservations for the UK, 70 observations for Canada, 71 observa-

ions for France, and 76 for South Korea. For these five countries

he outbreaks of COVID-19 started almost from the same timeline

nd the epidemic curves still not showing the sharp diminishing

ature, just like China. We limit our attention to trended and non-

easonal models, given the patterns, observed in Table 1 . Note that

e follow a pragmatic approach in that we assume that the trend

ill continue indefinitely in the future in contradiction with other

-curve or deterministic SIR modeling approaches which assume

onvergence. 

.2. Proposed model 

To forecast confirmed cases of COVID-19, we adopt hybrid time

eries forecasting approaches combining ARIMA and wavelet-based

orecasting techniques. The proposed hybrid model overcome the

eficiencies of the single time series models. Before describing the

roposed methodology, we give a brief description of the individ-

al models to be used in the hybridization. 

.2.1. ARIMA model 

ARIMA is a classical time series model, used for tracking linear

endencies in stationary time series data. ARIMA model is denoted

y ARIMA( p, d, q ). The parameters p and q are the order of the

R model and the MA model respectively, and d is the level of

ifferencing [9] . ARIMA model can be mathematically expressed as

ollows: 

 t = θ0 + φ1 y t−1 + φ2 y t−2 + · · · + φp y t−p + ε t − θ1 ε t−1 

−θ2 ε t−2 − · · · − θq ε t−q , 

here y t denotes the actual value of the variable under considera-

ion at time t , εt is the random error at time t . The φi and θ j are

he coefficients of the ARIMA model. The basic assumption made

y the ARIMA model is that the error series follows zero mean

ith constant variance, and satisfies the i.i.d condition. Building an

RIMA model for any given time series dataset can be described

n three iterative steps: model identification (achieving stationar-

ty), parameter estimation (the autocorrelation function (ACF) and

he partial autocorrelation function (PACF) plots are used to select

he values of parameters p and q ), and model diagnostics checking

finding the ‘best’ fitted forecasting model using Akaike Informa-

ion Criterion (AIC) and the Bayesian Information Criterion (BIC))

15] . 

https://ourworldindata.org/coronavirus
https://github.com/indrajitg-r/COVID
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Table 1 

Training datasests and corresponding ACF, PACF plots for Canada, France, India, South Korea, and the UK. 
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.2.2. Wavelet-based Forecasting (WBF) model 

Wavelet analysis is a mathematical tool that can reveal informa-

ion within the signals in both the time and scale (frequency) do-

ains [27] . This property overcomes the basic drawback of Fourier

nalysis and wavelet transforms the original signal data (especially

n the time domain) into a different domain for data analysis and

rocessing. Wavelet-based models are most suitable for nonsta-

ionary data, unlike ARIMA [23] . Most epidemic and climatic time-

eries datasets are nonstationary; therefore, wavelet transforms are

sed as a forecasting model for these datasets [2,11] . When con-

ucting wavelet analysis in the context of time series analysis, the

election of the optimal number of decomposition levels is vital

o determine the performance of the model in the wavelet do-

ain. The following formula for the number of decomposition lev-

ls, W L = int[ log(n )] is used to select the number of decomposition

evels, where n is the time-series length. The wavelet-based fore-

asting (WBF) model transforms the time series data by using a

ybrid maximal overlap discrete wavelet transform (MODWT) al-

orithm with a ‘haar’ filter. Daubechies wavelets can produce iden-

ical events across the observed time series in so many fashions

hat most other time series prediction models cannot recognize
3] . The necessary steps of a wavelet-based forecasting model, de-

ned by [2] , are as follows. Firstly, the Daubechies wavelet trans-

ormation and a decomposition level are applied to the nonstation-

ry time series data. Secondly, the series is reconstructed by re-

oving the high-frequency component, using the wavelet denois-

ng method. And, lastly, an appropriate ARIMA model is applied to

he reconstructed series to generate out-of-sample forecasts of the

iven time series data. 

.2.3. Hybrid ARIMA-WBF model 

For the COVID-19 datasets, we propose a hybridization of sta-

ionary ARIMA and nonstationary WBF model to reduce the indi-

idual biases of the component models [24] . The COVID-19 cases

atasets for five different countries are complex in nature. Thus,

he ARIMA model fails to produce random errors or even station-

ry residual series, evident from Fig. 1 . The behavior of the resid-

al series generated by ARIMA is mostly oscillatory and periodic;

hus, we choose the wavelet function to model the remaining se-

ies. Several hybrid models based on ARIMA and neural networks

re available in the field of time series forecasting; see for example

1,8,12,19,25,35] . 
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Fig. 1. Plots of ARIMA residuals for different countries: (a) Canada; (b) France; (c) India; (d) South Korea; and (e) the UK. 
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Motivated by the above discussion, we propose a novel hybrid

ARIMA-WBF model which is a two-step pipeline approach. In the

first step of the proposed hybrid approach, an ARIMA model is

built to model the linear components of the epidemic time se-

ries, and a set of out-of-sample forecasts are generated. In the sec-

ond phase, the ARIMA residuals (oscillatory residual series) are re-

modeled using a mathematically-grounded WBF model. Here, WBF

models the left-over autocorrelations (in this case, the oscillatory

series in Fig. 1 ) in the residuals which ARIMA could not model. The

algorithmic presentation of the proposed hybrid model is given in

Algorithm 1 . 

Algorithm 1 Proposed Hybrid ARIMA-WBF Model. 

1 Given a time series of length n , input the in-sample (train-

ing) COVID-19 daily cases data.2 Determine the best ARIMA (p, d, q )

model using the in-sample (training) data. 

• ARIMA parameters p, d, and q values are selected using the pro-

cedures described in Section 2.2.1. 
• Obtain the predictions using the selected ARIMA (p, d, q ) model

for the in-sample data and generate required number of out-of-

sample forecasts. 
• Obtain the residual series (ε t ) by subtracting ARIMA predicted

values from the original training series. 

3 Train the residual series (ε t ) generated by ARIMA by the WBF

model, as described in Section 2.2.2. 

• Select the number of decomposition level using the formulae

W L = int[ log(n )] and boundary is chosen to be ‘periodic’. 
• Obtain in-sample predictions ( ̂  ε t ) using the WBF model and

generate required number of out-of-sample forecasts. 

4 Final predictions ( ̂  Y t ) are obtained by combining thenARIMA pre-

dictions with WBF predictions ( ̂  ε t ) for both the training series as

well as the out-of-sample forecasts. 
The proposed model can be looked upon as an error remodeling

pproach in which we use ARIMA as the base model and remodel

ts error series by wavelet-based time series forecasting technique

o generate more accurate forecasts. This is in relevance to model

isspecification in which disturbances in the nonlinear time series

f COVID-19 cases cannot be correctly modeled with the ARIMA

odel. Therefore, if the error series generated by ARIMA is ad-

quately modeled and incorporated with the forecasts, the per-

ormance of the out-of-sample estimates can be improved, even

hough marginally at times. 

emark. The proposed hybrid approach contradicts other math-

matical and traditional forecasting modeling approaches applied

o COVID-19 data. We choose two completely diverse models for

ybridization, one from classical forecasting literature and another

rom modern forecasting approaches. 

.3. Results 

Five time series COVID-19 datasets for Canada, France, India,

outh Korea, and the UK are considered for training the pro-

osed model and the component models. The datasets are nonlin-

ar, nonstationary, and non-gaussian in nature. We have used root

ean square error (RMSE), mean absolute error (MAE), to evalu-

te the predictive performance of the models used in this study

17] . Since the number of data points in both the datasets is lim-

ted thus going for advanced deep learning techniques will simply

ver-fit the datasets [14] . 

We start the experimental evaluation for all the five datasets

ith the classical ARIMA(p,d,q) using ‘ forecast ’ [16] statistical pack-

ge in R software. To fit an ARIMA model, we first specify the

arameters of the model. Using ACF plot and PACF plot (See

able 1 ), we can decide the value of the parameters of the model.

e have also performed unit root tests for stationarity check

nd all the datasets were found nonstationary. The ‘best’ fitted

RIMA model is chosen using AIC and BIC values for each train-

ng dataset. The fitted ARIMA models for five datasets are as fol-

ows: ARIMA(1,2,1) for India, ARIMA(1,1,2) for Canada, ARIMA(0,1,1)
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Fig. 2. Figures of (a) Actual Vs. predicted (Hybrid ARIMA-WBF Model) values for Canada COVID-19 data; (b) Real-time forecasts (10 days) of the number of cases for Canada. 

Fig. 3. Figures of (a) Actual Vs. predicted (Hybrid ARIMA-WBF Model) values for France COVID-19 data; (b) Real-time forecasts (10 days) of the number of cases for France. 
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or France, ARIMA(2,1,0) for South Korea, and ARIMA(2,2,2) for the

K. We employ a pre-defined Box-Cox transformation set to λ = 0

o ensure the forecast values stay positive. As the ARIMA model is

tted, forecasts are generated for 10-time steps (5 April 2020 to

4 April 2020) for all the five datasets. We also compute training

ata predicted values and calculate the residual errors. Plots for the

esidual series are given in Fig. 1 . 

It is interesting to see that the error series (residuals) gen-

rated by ARIMA are oscillating and nonstationary for all the

atasets. These seasonal oscillations can be captured through the

avelet transform, which can decompose a time series into a lin-

ar combination of different frequencies. These residual series as

n Fig. 1 ) satisfy the admissibility condition (zero mean) that forces

avelet functions to wiggle (oscillate between positive and nega-

ive), a typical property of wavelets. Thus, we remodel the residu-

ls obtained using the ARIMA model with that of the WBF model.

he value of Wavelet levels is obtained by using the formula, as

entioned in Algorithm 1 . WBF model was implemented using

 WaveletArima ’ [26] package in R software with ‘periodic’ bound-

ry and all the other parameters were kept as default. As the WBF

odel is fitted on the residual time series, predictions are gener-

ted for the next ten time steps (5 April 2020 to 14 April 2020).

urther, both the ARIMA forecasts and WBF residual forecasts are

dded together to get the final out-of-sample forecasts for the next

en days (5 April 2020 to 14 April 2020). The hybrid model fittings

training data) for five countries, namely Canada, France, India,

outh Korea and the UK are displayed in Figs. 2 (a), 3 (a), 4 (a), 5 (a)

nd 6 (a) respectively. The real-time (short-term) forecasts using

RIMA, WBF, and hybrid ARIMA-WBF model for Canada, France, In-

ia, South Korea, and the UK are displayed in Figs. 2 (b), 3 (b), 4 (b),

 (b) and 6 (b) respectively. 

c  
The predicted values for the training COVID-19 cases datasets

f the proposed hybrid model for five countries are further used

or model adequacy checking and based on actual and predicted

est outputs, we computed RMSE and MAE for all the datasets and

eported them in Table 2 . The performances of the proposed hy-

rid ARIMA-WBF model are superior as compared to the individ-

al models for Canada, France, and the UK, whereas, for India and

outh Korea, our results are competitive with ARIMA. It is often

rue that no model can be universally employed in all circum-

tances, and this is in relevance with “no free lunch theorem” [33] .

ven if in a very few cases hybrid ARIMA-WBF model gave lower

nformation criteria values (in terms of RMSE and MAE for training

ata), we still can opt for the hybrid model given the asymmet-

ic risks involved as we believe that it is better to take decisions

ased on a hybrid model rather than depending on a single one at

east for this pandemic. We produced ten days ahead point fore-

asts based on all the three models discussed in this chapter and

eported then in Figs. 2–6 . Our model can easily be updated on a

aily or periodic basis once the actual values are received for the

ountry-wise COVID-19 cases. 

emark. Please note that this is not an ex-post analysis, but a real,

ive forecasting exercise. Thus, these real-time short-term fore-

asts based on the proposed hybrid ARIMA-WBF model for Canada,

rance, India, South Korea, and the UK will be helpful for govern-

ent officials and policymakers to allocate adequate health care

esources for the coming days. 

. Risk assessment of COVID-19 cases 

At the outset of the COVID-19 outbreak, data on country-wise

ase fatality rates due to COVID-19 were obtained for 50 affected
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Fig. 4. Figures of (a) Actual Vs. predicted (Hybrid ARIMA-WBF Model) values for India COVID-19 data; (b) Real-time forecasts (10 days) of the number of cases for India. 

Fig. 5. Figures of (a) Actual Vs. predicted (Hybrid ARIMA-WBF Model) values for South Korea COVID-19 data; (b) Real-time forecasts (10 days) of the number of cases for 

South Korea. 

Fig. 6. Figures of (a) Actual Vs. predicted (Hybrid ARIMA-WBF Model) values for the UK COVID-19 data; (b) Real-time forecasts (10 days) of the number of cases for the UK. 

Table 2 

RMSE and MAE values for different forecasting models on five time series (training data only) data sets. 

Model Performance Metrics ARIMA WBF Hybrid ARIMA-WBF Model 

Canada RMSE 150.05 202.64 149.60 

MAE 41.68 89.21 40.05 

France RMSE 710.46 740.06 631.91 

MAE 358.87 441.97 306.78 

India RMSE 50.83 68.38 55.25 

MAE 16.07 31.78 24.00 

South 

Korea 

RMSE 81.81 82.78 90.29 

MAE 44.71 47.81 54.06 

UK RMSE 209.36 405.87 180.66 

MAE 104.28 248.83 100.68 
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Table 3 

Descriptive statistics of possible causal variables and the response variable of CFR dataset for 50 countries. 

Input and Output variables Notation Variable Type Mean Variance Min. Value Max. Value 

Total cases (in thousands) x.x1 Numerical 20.89 2187.92 0.25 277.96 

population (in millions) x.x2 Numerical 110.62 73658.12 0.03 1402.01 

population density per km 

2 x.x3 Numerical 139.78 20371.56 3.00 568 

% people > 65 years age x.x4 Numerical 13.58 38.59 3.20 27 

lockdown days count x.x5 Numerical 20.20 95.96 0 73 

time period (in days) x.x6 Numerical 48.72 309.23 25 84 

doctors per 1000 people x.x7 Numerical 2.71 1.98 0.20 6.36 

Hospital beds per 1000 persons x.x8 Numerical 3.92 8.24 0.10 13.70 

Income standards x.x9 Categorical - - 0 1 

Climate zones x.x10 Categorical - - −1 1 

CFR (response variable) Y Numerical 0.041 0.001 0.005 0.127 
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1  
ountries. The case fatality rate can be crudely defined as the num-

er of deaths in persons who tested positive for COVID-19 divided

y the confirmed number of COVID-19 cases. In this section, we

re going to find out a list of essential causal variables that have

trong influences on the CFR. The datasets and codes of this section

re made publicly available at https://github.com/indrajitg-r/COVID

or the reproducibility of this work. 

.1. Data 

In the face of rapidly changing data for COVID-19, we calcu-

ated the case fatality ratio estimates for 50 countries from the

ay of starting the outbreak to 4 April 2020 from the following

ebsite. 2 A lot of preliminary analysis is done to determine a set

f possible variables, some of which are expected to be critical

ausal variables for risk assessments of COVID-19 in these affected

ountries. Previous studies [5,18,22,30] have suggested that the to-

al number of cases, age distributions, and shutdown period have

igh impacts on the CFR values for some of the countries. Along

ith these three variables, we also considered seven more demo-

raphic structures and disease characteristics for these countries as

nput variables that are likely to have a potential impact on the CFR

stimates. Therefore, the CFR modeling dataset consists of 50 ob-

ervations having ten possible causal variables and one numerical

utput variable (viz. CFR), as reported in Table 3 . 

The possible causal variables considered in this study are the

ollowings: the total number of COVID-19 cases (in thousands) in

he country till 4 April, 2020, population density per km 

2 for the

ountry, total population (in millions) of the country (approx.), per-

entage of people in the age group of greater than 65 years, lock-

own days count (from the starting day of lockdown till April 4,

020), time-period (in days) of COVID-19 cases for the country

starting date to April 4, 2020), doctors per 10 0 0 people in the

ountry, hospital beds per 10 0 0 people in the country, income

tandard (e.g., high or lower) of the country and climate zones

e.g., tropical, subtropical or moderate) of the country. The dataset

ontains a total of 8 numerical input variables and two categorical

nput variables. 

.2. Method: Regression Tree 

For the risk assessment with the CFR dataset for 50 countries,

e apply the regression tree (RT) [7] that has built-in feature se-

ection mechanism, easy interpretability, and provides better visu-

lization. RT, as a widely used simple machine learning algorithm,

an model arbitrary decision boundaries. The methodology out-

ined in [7] can be summarized into three stages. The first stage

nvolves growing the tree using a recursive partitioning technique

o select essential variables from a set of possible causal variables
2 https://www.worldometers.info/coronavirus/ 

o  

t  

h  
nd split points using a splitting criterion. The standard splitting

riteria for RT is the mean squared error (MSE). After a large tree is

dentified, the second stage of RT methodology uses a pruning pro-

edure that gives a nested subset of trees starting from the largest

ree grown and continuing the process until only one node of the

ree remains. The cross-validation technique is popularly used to

rovide estimates of future prediction errors for each subtree. The

ast stage of the RT methodology selects the optimal tree that cor-

esponds to a tree yielding the lowest cross-validated or testing

et error rate. To avoid instability of trees in this stage, trees with

maller sizes, but comparable in terms of accuracy, are chosen as

n alternative. This process can be tuned to obtain trees of vary-

ng sizes and complexity. A measure of variable importance can

e achieved by observing the drop in the error rate when another

ariable is used instead of the primary split. In general, the more

requent a variable appears as a primary split, the higher the im-

ortance score assigned. A detailed description of the tree building

rocess is available at [17] . 

.3. Results 

The rationale behind the choice of RT as a potential model to

nd the important casual variables out of 10 input variables for

he CFR estimates is the simplicity, easy interpretability, and high

ccuracy of the RT algorithm. We apply an optimal RT model to the

ataset consisting of 50 different country samples and try to find

ut potential casual variables from the set of available variables

hat are related to the case-fatality rates. RT is implemented using

 rpart ’ [31] package in R with “minsplit” equals to 10% of the data

s a control parameter. We have used RMSE, co-efficient of mul-

iple determination ( R 2 ), and adjusted R 2 ( AdjR 2 ) to evaluate the

redictive performance of the tree model used in this study [17] .

n optimal regression tree is built with 7 variables with ‘minsplit’

 5 with equal costs for each variable. The estimates of the per-

ormance metrics for the fitted tree are as follows: RMSE = 0.013,

 

2 = 0 . 896 , and AdjR 2 = 0 . 769 . A variable importance list from the

T is given in Fig. 7 and the fitted tree is provided in Fig. 8 . 

From the variable importance plot based on the complexity pa-

ameter of the RT model (also see Fig. 7 ), seven causal variables

re obtained out of 10 potential input variables having higher im-

ortance. These seven causal variables that significantly affect the

FR for 50 most affected countries are the followings: total num-

er of COVID-19 cases in the country (in thousands), percentage

f people in the age group of greater than 65 years, total popula-

ion (in millions) of the country, doctors per 10 0 0 people in the

ountry, lockdown period (in days) for the country, time-period

in days) of COVID-19 cases for the country, and hospital beds per

0 0 0 people in the country. Our results are consistent with previ-

us results obtained by [5,18,30] , where the authors suggested that

he total number of cases, age distributions, and shutdown period

ave high impacts on the CFR estimates. But interestingly, we ob-

https://github.com/indrajitg-r/COVID
https://www.worldometers.info/coronavirus/
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Fig. 7. Variable Importance Percentages affecting the CFR based on a complexity parameter in RT. 

Fig. 8. Optimal tree representing the relationships between the causal variables and CFR. 
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tained four more essential causal variables that will provide some

new insights into the study of risk assessments for COVID-19 af-

fected countries. Out of these 7 numerical input variables, there

are four control variables (number of cases, people of age group

> 65 years, lockdown period, and hospital beds per 10 0 0 people)

present that can be managed to fight against this deadly disease.

Once these variables are taken care of, the respective country may

reduce their case fatality rate at a significant rate. 

Fig. 8 shows the relationship between the important causal

variables and CFR. In Fig. 8 , the tree starts with the total number

of COVID-19 cases as the most crucial causal variable in the parent

node. In each box, the top most numerical values suggest the aver-

age CFR estimates based on the tree. One of the key findings of the
a  
ree is the following rule: When the number of cases of a country

s greater than 14,0 0 0 having a population between 14 and 75 mil-

ion are having second highest case fatality rate, viz., 10%. Similarly,

ne can see all the rules generated by RT to get additional informa-

ion about the relationships between control parameters and the

esponse CFR variable. 

. Limitations of our findings 

We made some simplifying assumptions to carry out the anal-

sis of COVID-19 datasets. The assumptions are listed as follows:

a) the virus mutation rates are comparable for different coun-

ries; (b) the recovered persons will achieve permanent immunity

gainst COVID-19; (c) we ignore the effect of climate change (also
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patial data structures) during the short-term predictions. Along

n this line, we presented two different approaches to deal with

wo inter-connected problems on COVID-19. In the first problem of

hort-term predictions for COVID-19 outbreak in five countries, we

roposed a hybrid methodology combining ARIMA and WBF mod-

ls. In the second problem of risk assessment, we found some im-

ortant factors affecting case fatality rates of COVID for 50 highly

ffected nations. However, there may exist a few more controllable

actor(s), and some disease-based characteristics that can also have

n impact on the value of CFR for different countries, can be re-

arded as future scope of the study. 

. Discussions 

The COVID-19 outbreaks globally present a significant chal-

enge for modelers, as there are limited data available on the early

rowth trajectory, and epidemiological characteristics of the novel

oronavirus have not been fully elucidated. In this study, we con-

idered two alarmingly important problems relevant to ongoing

OVID-19 pandemic. The first problem deals with the real-time

orecasts of the daily COVID-19 cases in five different countries. We

roposed a hybrid ARIMA-WBF model that can explain the non-

inear and nonstationary behavior present in the univariate time

eries datasets of COVID-19 cases. Ten days ahead forecasts are

rovided for Canada, France, India, South Korea, and the UK. The

roposed model can be used as an early warning system to fight

gainst the COVID-19 pandemic. Below we present a list of sugges-

ions based on the results of the real-time forecasts. 

1. Since we presented a real-time forecast system unlike an ex-

post analysis, thus one can regularly update the actual con-

firmed cases and update the predictions, just like it happens

in weather forecasting. 

2. The forecasts mostly show oscillating behavior for the next 10

days and reflect the impact of the broad spectrum of social

distancing measures implemented by the governments, which

likely helped stabilize the epidemic. 

3. The short-term forecasts don’t necessarily show any stiff decay

sooner; also, these five countries are not going to face any un-

like uplifts in the number of cases too. 

4. Guided by the short-term forecasts reported in this paper, the

lockdown period can be adjusted accordingly. 

Secondly, we assessed the risk of COVID-19 by finding seven

ey parameters that are expected to have powerful associations

ith that of case fatality rates. This is done by designing an opti-

al regression tree model, a simplified machine learning approach.

he model is very flexible, easily interpretable, and the more data

ill come, one can just incorporate the new data sets and rebuild

he trees to get the updated estimates. RT provides a better vi-

ual representation and is easily interpretable to be understood by

 broader audience. Quantification of the outbreak risks and their

ependencies on the key parameters will support the governments

nd policymakers for the planning of health care systems in differ-

nt countries that faced this epidemic. Experimental results sug-

est four control variables out of seven highly influential variables

hat will have a significant impact on controlling CFR. Below we

resent a point by point discussion of the control variables affect-

ng CFR and preventive actions to be taken by the governments. 

1. The number of covid cases of the country can be reduced by

enforcing social distancing strategies. 

2. Number of people of age group > 65 years should be specially

taken care of and isolated. 

3. Lockdown time period can be extended if the country faces a

sharp increase in the number of cases and or deaths. 
4. The number of hospital beds should be increased by making

special health care arrangements in other places to deal with

this emergency due to COVID-19. 
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